CCE PF CCE PR

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ — 2018

S. S. L. C. EXAMINATION, MARCH/APRIL, 2018

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 26. 03. 2018] ಸಂಕೇತ ಸಂಖ್ಯೆ : **81-E**

Date: 26. 03. 2018] CODE No.: **81-E**

ವಿಷಯ: ಗಣಿತ

Subject: MATHEMATICS

(ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)

(ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ & ಪುನರಾವರ್ತಿತ ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ / Private Fresh & Private Repeater) (ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 100

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. 1.		In the given Venn diagram n (A) is	
		$ \begin{array}{c c} U \\ A \\ 1 \\ 3 \\ 5 \\ 6 \end{array} $	
		Ans.:	
	A	3	1
2.		Sum of all the first 'n' terms of even natural number is	
		Ans.:	
	A	n(n+1)	1

PF & PR-7008

[Turn over

PF & PR-7008

The surface area of a sphere of radius 7 cm is

8.

В

 616 cm^2

Qn. Nos.	Value Points	Marks allotted
II.	Answer the following: $6 \times 1 = 6$	
9.	Find the HCF of 14 and 21.	
	Ans.:	
	$14 = 2 \times 7$	
	$21 = 3 \times 7$ ½	
	HCF = 7	
	[Direct Answer full marks]	1
10.	The average runs scored by a batsman in 15 cricket matches is 60 and standard deviation of the runs is 15. Find the coefficient of variation of the runs scored by him.	
	Ans.:	
	$\overline{X} = 60$	
	$\sigma = 15$ C.V. = $\frac{\sigma}{X} \times 100$ C.V. = $\frac{\text{Standard deviation}}{\text{Average}} \times 100$	
	$= \frac{15}{60} \times 100 \qquad OR \qquad = \frac{15}{60} \times 100$	
	= 25. = 25 $\frac{1}{2}$	1
11.	Write the degree of the polynomial $f(x) = x^2 - 3x^3 + 2$.	
	Ans.:	
	Degree 3	1
12.	What are congruent circles?	
	Ans.:	
	Circles having same radii but different centres. Different centres but $ \begin{array}{c} 1/2\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1
13.	If $\sin \theta = \frac{5}{13}$ then write the value of $\csc \theta$.	1
	Ans.:	
	$\csc \theta = \frac{13}{5}$	1

Qn. Nos.	Value Points	Marks allotted
14.	Write the formula used to find the total surface area of a right circular	
	cylinder.	
	Ans.:	
	$TSA = 2\pi r (r + h)$ sq.units	1
III. 15.	If $U = \{0, 1, 2, 3, 4\}$ and $A = \{1, 4\}$, $B = \{1, 3\}$ show that	
	$(A \cup B)' = A' \cap B'.$	
	Ans.:	
	$LHS = (A \cup B)'$	
	$A \cup B = \{1, 3, 4\}$	
	$(A \cup B)' = \{0, 2\}$ (i)	
	$RHS = A' \cap B'$	
	$A' = \{0, 2, 3\}$ $B' = \{0, 2, 4\}$	
	$B' = \{0, 2, 4\}$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	$A' \cap B' = \{0, 2\}$ (ii)	
	From (i) and (ii)	
	$(A \cup B)' = A' \cap B'$	2
16.	Find the sum of the series 3 + 7 + 11 + to 10 terms.	
	Ans.:	
	3 + 7 + 11 10 terms	
	a = 3	
	d = 4	
	$S_n = \frac{n}{2} [2a + (n - 1)d]$	
		1

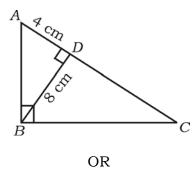
Qn. Nos.	Value Points	Marks allotted
	$S_{10} = \frac{10}{2} [2(3) + (10 - 1)4]$	
	$= \frac{10}{2} [6 + 9 (4)]$ 10 16 26 1	
	$=\frac{10}{2}[6+36]$	
	= 5 × 42.	2
	$S_{10} = 210$ ½	
17.	At constant pressure certain quantity of water at 24°C is heated. It	
	was observed that the rise of temperature was found to be 4°C per	
	minute. Calculate the time required to rise the temperature of water to	
	100°C at sea level by using formula.	
	Ans.:	
	$\alpha = 24$	
	d = 4	
	$T_n = 100$	
	n = ?	
	$T_n = a + (n-1) d$	
	100 = 24 + (n-1) 4	
	$100 = 24 + 4n - 4$ \frac{1}{2}	
	100 = 20 + 4n	
	$n = \frac{80}{4}$	
	$n = 20.$ (20 – 1) = 19 minutes or 20th minute $\frac{1}{2}$	2
	Alternate Method :	
	By taking $a = 28$ and $n = 19$	
	OR	
	Any other correct alternate method give marks.	

Qn. Nos.	Value Points	3	Marks allotted
18.	Prove that $2 + \sqrt{5}$ is an irrational numb	er.	
	Ans.:		
	Let us assume $2 + \sqrt{5}$ is rational		
	$2+\sqrt{5} = \frac{p}{q}, p, \ q \in \mathbb{Z}, \ q \neq 0$	1/2	
	$ \sqrt{5} = \frac{p}{q} - 2 $ $ \sqrt{5} = \frac{p - 2q}{q} $	1/2	
	$\Rightarrow \sqrt{5}$ is rational		
	but $\sqrt{5}$ is not a rational number	$\frac{1}{2}$	
	This is against our assumption		
	\therefore 2 + $\sqrt{5}$ is an irrational number.	1/2	2
19.	If ${}^{n}P_{4} = 20 ({}^{n}P_{2})$ then find the value of	f <i>n</i> .	
	Ans.:		
	$^{n}P_{4} = 20 ^{n}P_{2}$		
	n(n-1)(n-2)(n-3) = 20 n(n-1)) 1/2	
	(n-2)(n-3) = 20 OR $(n-3)$	$(n-2)(n-3) = 5 \times 4$	
	$n^2 - 3n - 2n + 6 = 20 \qquad \Rightarrow$	n-2=5	
	$n^2 - 5n - 14 = 0 \qquad \qquad n$	$= 5 + 2$ $1\frac{1}{2}$	
	$n^2 - 7n + 2n - 14 = 0 \qquad \qquad \therefore$	n = 7	
	n(n-7) + 2(n-7) = 0	J	
	(n-7)(n+2)=0		
	n-7=0 or n	+ 2 = 0	
	n = 7	= -2	2
	(Any alternate method to be considered)		

Qn. Nos.	Value Points	Marks allotted
20.	A die numbered 1 to 6 on its faces is rolled once. Find the probability of getting either an even number or multiple of '3' on its top face. Ans.:	,
	$S = \{1, 2, 3, 4, 5, 6\}$ $n(S) = 6$ This can also be considered	
	$A = \{2, 3, 4, 6\}$ $n(A) = 4$ $p(A) = \frac{n(A)}{n(S)}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) \frac{1}{2}$ $= \frac{3}{6} + \frac{2}{6} - \frac{1}{6}$ $= \frac{4}{6}$	
	$p(A) = \frac{n(A)}{n(S)}$ = $\frac{4}{6}$ OR $\frac{2}{3}$	
21.	(Any other alternate methods give marks) What are like surds and unlike surds ? Ans.:	
	A group of surds having same order and same radicand in their simplest form. $\frac{1}{2} + \frac{1}{2}$ Group of surds having different orders or different radicands or both	?
	in their simplest form. $\frac{1}{2} + \frac{1}{2}$	
22.	Rationalise the denominator and simplify : $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}.$	
	Ans.: $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$	1
	$= \frac{\left(\sqrt{5} + \sqrt{3}\right)^2}{\left(\sqrt{5}\right)^2 - \left(\sqrt{3}\right)^2}$	
	$= \frac{5+3+2\sqrt{15}}{2}$ $= \frac{8+2\sqrt{15}}{2}$	
	$= 4 + \sqrt{15}$.	2

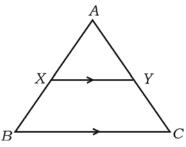
Qn. Nos.	Value Points	Marks allotted
23.	Find the quotient and the remainder when $f(x) = 2x^3 - 3x^2 + 5x - 7 \text{ is divided by } g(x) = (x - 3) \text{ using}$	
	synthetic division.	
	OR	
	Find the zeros of the polynomial $p(x) = x^2 - 15x + 50$.	
	Ans. :	
	$f(x) = 2x^3 - 3x^2 + 5x - 7$	
	g(x) = x-3	
	3 2 -3 5 -7	
	6 9 42	
	2 3 14 35	
	$q(x) = 2x^2 + 3x + 14$	
	r(x) = 35.	2
	OR	
	$f(x) = x^2 - 15x + 50$	
	At zeroes of the polynomial	
	$f(x) = 0$ $x^2 - 15x + 50 = 0$	
	$x^2 - 15x + 50 = 0$	

Qn. Nos.	Value Points		Marks allotted
	$x^2 - 10x - 5x + 50 = 0$	1/2	
	x(x-10)-5(x-10)=0	1/2	
	(x-10)(x-5) = 0	1/2	
	x - 10 = 0 or $x - 5 = 0$		
	x = 10 x = 5		
	∴ The zeroes of the polynomial are 10 and 5.	1/2	2
24.	Solve the equation $x^2 - 12x + 27 = 0$ by using formula.		
	Ans.:		
	a = 1, b = -12, c = 27		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1/2	
	$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(27)}}{2(1)}$		
	$x = \frac{12 \pm \sqrt{144 - 108}}{2}$	1/2	
	$x = \frac{12 \pm \sqrt{36}}{2}$		
	$x = \frac{12 \pm 6}{2}$	1/2	
	$x = \frac{12+6}{2}$ or $x = \frac{12-6}{2}$		
	$x = \frac{12 \pm \sqrt{36}}{2}$ $x = \frac{12 \pm 6}{2}$ $x = \frac{12 + 6}{2}$ $x = \frac{18}{2}$ or $x = \frac{6}{2}$ $x = 9$ or $x = 3$		
	x = 9 or $x = 3$	1/2	2

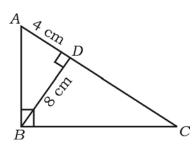

Qn.		Marks
Nos.	Value Points	allotted
25.	Draw a chord of length 6 cm in a circle of radius 5 cm. Measure and write the distance of the chord from the centre of the circle. Ans.	
	Circle ½	
	Chord ½	
	Mid-point marking ½	
	By measuring $OC = 4 \text{ cm}$.	2

Qn. Nos.	Value Points	Marks allotted

26.


In \triangle ABC | ABC = 90°, BD \perp AC. If BD = 8 cm, AD = 4 cm, find

CD and AB.



In \triangle ABC, XY || BC and XY = $\frac{1}{2}$ BC . If the area of \triangle AXY = 10 cm 2 ,

find the area of trapezium XYCB.

Ans.:

$$BD^2 = AD \cdot CD$$
$$8^2 = 4 \cdot CD$$

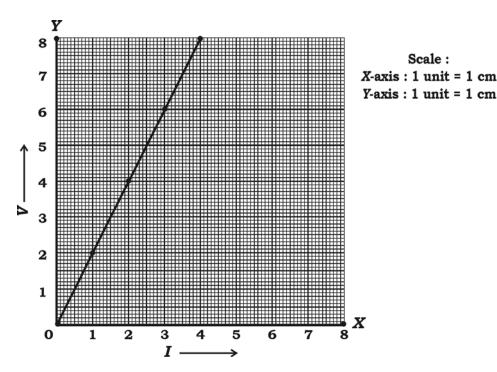
 $\frac{1}{2}$

$$8^2 = 4 \cdot CD$$

$$\frac{64}{4} = CD$$

$$CD = 16 \text{ cm}$$

 $\frac{1}{2}$


$$\therefore AC = CD + AD = 16 + 4 = 20 \text{ cm}$$

Qn. Nos.	Value Points		Marks allotted
	$AB^2 = AD \cdot AC$	1/2	
	= 4 × 20		
	$AB^2 = 80$		
		1/	
	$AB = \sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5} \text{ cm}$	1/2	2
	(Any other alternate methods give marks)		
	Since $XY \mid\mid BC$		
	$\Delta AXY \sim \Delta ABC$ $\frac{ar(\Delta AXY)}{ar(\Delta ABC)} = \frac{XY^2}{BC^2}$	1/2	
	$\frac{ar\left(\Delta AXY\right)}{ar\left(\Delta ABC\right)} = \frac{XY^2}{4XY^2} \qquad \left[\begin{array}{cc} : & XY = \frac{1}{2}BC \\ & 2XY = BC \end{array} \right]$	1/2	
	$\frac{10}{ar\left(\Delta ABC\right)} = \frac{1}{4}$		
	$40 = ar \triangle ABC$	1/2	
	$ar \longrightarrow XYCB = 40 - 10$, 2	
	$= 30 \text{ cm}^2.$	1/2	2
27.	Show that, $\cot \theta \cdot \cos \theta + \sin \theta = \csc \theta$.		
	Ans.:		
	$= \frac{\cos \theta}{\sin \theta} \cdot \cos \theta + \sin \theta$	1/2	
	$= \frac{\cos^2\theta + \sin^2\theta}{\sin\theta}$	1/2	
	$=\frac{1}{1}$	1/2	
		72	2
	$\cot \theta \cdot \cos \theta + \sin \theta = \csc \theta$ $LHS = \cot \theta \cdot \cos \theta + \sin \theta$ $= \frac{\cos \theta}{\sin \theta} \cdot \cos \theta + \sin \theta$ $\cos^2 \theta + \sin^2 \theta$	1/2	2

Qn.	Value Points	Marks
Nos.	value Points	allotted

A student while conducting an experiment on Ohm's law, plotted the 28. graph according to the given data. Find the slope of the line obtained.

X-axis I	1	2	3	4	
Y-axis V	2	4	6	8	

Scale:

Ans.:

$$(x_1, y_1) = (1, 2)$$

Alternate method may be given full marks.

$$(x_2, y_2) = (2, 4)$$

 $\frac{1}{2}$

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

 $\frac{1}{2}$

Slope =
$$m = \frac{4-2}{2-1} = \frac{2}{1} = 2$$

1

Or
$$(x_1, y_1) = (2, 4)$$
 $(x_2, y_2) = 3, 6$

$$(x_2, y_2) = 3, 6$$

Or
$$(x_1, y_1) = (3, 6)$$
 $(x_2, y_2) = 4, 8$

$$(x_2, y_2) = 4, 8$$

Or any two points may be taken to find the slope.

Qn. Nos.	Value Points							
29.	Draw the plan for the information given below:							
	(Scale 20 m = 1 c	em)						
		Metre To C						
		140						
	To D 50	100						
		60	40 to B					
	To E 30	40						
		From A						
	Ans.:							
	$40 \text{ m} = \frac{1}{20} \times 40 = 2$	cm						
	$60 \text{ m} = \frac{1}{20} \times 60 = 3$	cm						
	$100 \text{ m} = \frac{1}{20} \times 100 =$	5 cm						
	140 m = $\frac{1}{20} \times 140 =$	7 cm	1/2					
	$30 \text{ m} = \frac{1}{20} \times 30 = 1$	5 cm						
	$50 \text{ m} = \frac{1}{20} \times 50 = 20$	5 cm						
	D	60 G 40 m E 30 m F	1½ B					

PF & PR-7008

Qn. Nos.	Value Points	Marks allotted
30.	Out of 8 different bicycle companies, a student likes to choose bicycle from three companies. Find out in how many ways he can choose the companies to buy bicycle. Ans.: From 8 different bicycle companies he chooses 3 bicycle companies. ${}^{8}C_{3}$ ${}^{8}C_{3}$ ${}^{8}C_{3}$ ${}^{1}C_{r} = \frac{n!}{(n-r)! \cdot r!}$ ${}^{1}C_{r} = \frac{n!}{(n-r)! \cdot r!}$	
	$= \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = \frac{8!}{(8-3)! \cdot 3!} = \frac{8 \times 7 \times 6}{\cancel{5}! \times 3 \times 2 \times 1} = 56$ $= 56.$	2
31.	If A and B are two non-disjoint sets, draw Venn diagram to represent $A \setminus B$. Ans.:	
	Writing set A & B 1	
	Correct shading 1	2
32.	What is an Arithmetic progression? Write its general form. Ans.: A sequence in which the consecutive terms either increase or decrease by a fixed number. 1 OR An arithmetic progression is a sequence in which each term is obtained by adding a fixed number to the preceeding term.	
	$a, a+d, a+2d, a+3d \dots$	2

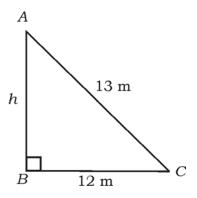
Qn. Nos.				Value Point	s				Marks allotted
33.	There are 10 p	oints in	ı a	plane suc	h th	at no three	of the	m are	
	collinear. Find out how many triangles can be formed by joining these								
	points.								
	Ans.:								
	n = 10								
	r = 3								
	${}^{n}C_{r} = \frac{1}{(n)^{n}}$							1/2	
	$^{10}C_3 = \overline{(1)}$	10! 0-3)!	3 !					1/2	
	$=\frac{1}{7}$							1/2	
	= 12							1/2	2
	Alternate method	:							
	$^{10}C_3 = \frac{^{10}P_3}{^{3!}}$								
	٠.	8							
	$= \frac{10 \times 9 \times 3}{3 \times 2 \times 3}$	1							
	= 120.								
34.	A student reads		oks	according	to th	ne given data	. Draw	a pie	
	chart to represen	t it.	I						
	Name of the books	Novel	s	Short stor	ies	Magazines	Journ	nals	
	No. of books	10		60		20	30)	
	Ans.:							•	
	Name of the b	ooks	No	of books		Central angle	е		
	1. Novels			10	1	$\frac{10}{20} \times 360 = 3$	80°		
	2. Short storie	s		60	$\frac{\epsilon}{1}$	$\frac{50}{20} \times 360 = 18$	30°		
	3. Magazines			20	1	$\frac{20}{120} \times 360 = 6$	60°	1	
	4. Journals			30	1	$\frac{30}{120} \times 360 = 9$	00°		

16

Sum of books = 120

Qn. Nos.	Value Points	Marks allotted
35.	Journals $90^{\circ} \begin{array}{c} \text{Magazines} \\ 90^{\circ} \text{Novels} \\ 180^{\circ} \\ \text{Short Stories} \end{array}$ Simplify: $\sqrt{75} + \sqrt{108} - \sqrt{192}$.	2
	Ans. :	
	$\sqrt{75} + \sqrt{108} - \sqrt{192} = \sqrt{25 \times 3} + \sqrt{36 \times 3} - \sqrt{64 \times 3}$	
	$= 5\sqrt{3} + 6\sqrt{3} - 8\sqrt{3}$	
	$= 3\sqrt{3}$.	2
36.	A polynomial $p(x) = x^2 + 4x + 2$ is divided by $g(x) = (x + 2)$.	
	Find the quotient by using division algorithm.	
	Ans.:	
	$P(x) = x^2 + 4x + 2$ $g(x) = (x + 2)$	
	P(x) = [g(x) * q(x)] + r(x)	
	$x^{2} + 4x + 2 = [(x + 2)(ax + b)] + r(x)$	
	$= ax^2 + bx + 2ax + 2b + r(x)$	
	$x^2 + 4x + 2 = ax^2 + x(b + 2a) + 2b + r(x)$	
	a = 1 $b + 2a = 4$ $2b + r(x) = 2$	
	$b = 4-2$ $b = 2$ $r(x) = 2-4$ $\frac{1}{2}$ $r(x) = -2$	
	Quotient = $(x+2)$	
	Remainder = -2 $\frac{1}{2}$	2

 $\frac{1}{2}$


2

Qn. Nos.	Value Points	Marks allotted
37.	If $v^2 = u^2 + 2as$, solve for v and find the value of v , if $u = 0$, $a = 2$	2
	and $s = 100$.	
	Ans.:	
	$v^2 = u^2 + 2as$	
	$v = \sqrt{u^2 + 2as}$	
	if $u = 0$, $a = 2$, $s = 100$, $v = ?$	
	$v = \pm \sqrt{0 + 2(2)100}$:
	$v = \pm \sqrt{400}$	
	$v = \pm 20.$	2

18

38. A vertical building casts a shadow of length 12 m. If the distance between the top of the building to the tip of the shadow at a particular time of the day is 13 m. Find the height of the building.

Ans.:

Height of the building = h

Length of the shadow = 12 m

Distance between top of the building to tip of the shadow = 13 m

$$AC^2 = AB^2 + BC^2$$

$$13^2 = h^2 + 12^2$$

$$169 = h^2 + 144$$

$$169 - 144 = h^2$$

$$25 = h^2$$

$$h = \sqrt{25} = 5 \text{ m}$$
1/2

PF & PR-7008

Qn. Nos.	Value Points	Marks allotted				
39.	Show that $(\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta$.					
	Ans.:					
	L.H.S. = $(\sin \theta + \cos \theta)^2$					
	$= \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cdot \cos \theta$					
	$= 1 + 2 \sin \theta \cdot \cos \theta$	2				
40.	Find the co-ordinates of the mid-point of the line segment joining the points (14, 12) and (8, 6).					
	Ans.:					
	$x_1 = 14$ $x_2 = 8$					
	$y_1 = 12 \qquad \qquad y_2 = 6$					
	$d = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$					
	$d = \left(\frac{14+8}{2}, \frac{12+6}{2}\right)$					
	$= \left(\frac{22}{2}, \frac{18}{2}\right)$ 1/2					
	$= (11, 9)$ $\frac{1}{2}$	2				
IV. 41.	In a Geometric progression the sum of first three terms is 14 and the					
	sum of next three terms of it is 112. Find the Geometric progression.					
	OR					
	If 'a' is the Arithmetic mean of b and c , 'b' is the Geometric mean of c and a , then prove that 'c' is the Harmonic mean of a and b .					
	Ans. :					
	Let the terms be a , ar , ar^2 , ar^3 , ar^4 , ar^5 .					
	$a + ar + ar^2 = 14$					
	$a(1+r+r^2) = 14$ (i)					
	$ar^3 + ar^4 + ar^5 = 112$					
	$ar^3 (1 + r + r^2) = 112$ (ii)					

Qn. Nos.	Value Points		Marks allotted
		de equation (2) by (1) $\frac{(1+r+r^2)}{1+r+r^2} = \frac{112}{14}$ $r^3 = 8$ $r = 2$	
	Substitute $r = 2$ in (i) $a(1+2+2^2) = 14$ a(7) = 14	1/2	
	a = 2 The terms are 2, 4, 8, 16, 32, 64. Any other alternate methods can also be co	$^{1}\!\!/_{\!2}$ nsidered.	3
	$a = \frac{b+c}{2} \qquad b = \sqrt{ac}$		
	$b^2 = ac$ $b + c$	1/2	
	$a = \frac{b+c}{2}$ $2a = b+c$	1/2	
	$\frac{2ab}{b} = b + c \qquad [\text{dividing & multiplying}]$ $2ab = b (b + c) \qquad \text{Multiply RHS & LH}$)R	
	2ab = b (b + c) Multiply RHS & LI $2ab = b^2 + bc$ 2ab = ac + bc 2ab = c (a + b)	1/2	
	$2ab = c(a+b)$ $\frac{2ab}{a+b} = c$	$\frac{1}{2}$	
	\therefore c is the harmonic mean between a and	b. ½	3

Qn. Nos.			•	Value Poi	nts					Marks allotted
	Alternate b +									
	$a = \frac{b+}{2}$	_	(i)		= ,					
					2 =					
				b	= -	$\frac{ac}{b}$			1	
	Substitu	te $b = \frac{a}{a}$	$\frac{ac}{b}$ in (i)							
	$a = \frac{ac}{b}$	$\frac{+c}{2}$							1/2	
	$2a = \frac{aa}{a}$								1/2	
	2ab = c	(a+b)							1/2	
	$\frac{2ab}{a+b} =$	<i>c</i> .							1/2	3
42.		_	7 30 studer iven below. I							
		Мо	ırks (x)	4	8	10	12	16		
		No. of s	students (f)	13	6	4	3	4		
	Ans.:									
	Assumed	l mean m	ethod :				1			l
	X	f	d = X - A	fd		d^2		$\int d^2$		
	4	13	- 6	- 78		36		468		
	8	6	- 2	- 12		4		24		
	10	4	0	0		0		0		
	12	3	2	6		4		12		
	16	4	6	24		36		144		
		n = 30	<i>A</i> = 10	$\sum fd = +$	60	Σ	$\Sigma f d^2$	= 648	3 1½	

Qn. Ios.	Value Points							
	Variance	$= \frac{\sum f}{n}$	$\frac{d^2}{dt} - \left(\frac{\sum f}{n}\right)^2$	$\left(\frac{d}{d}\right)^2$			1/2	
		$=\frac{648}{30}$	$\frac{3}{3} - \left(\frac{60}{30}\right)^2$				1/2	
		= 21.6	$5 - 2^2$					
		= 17.6	5 .				1/2	3
	Direct Me	ethod :						
	X	χ^2	f	fX	$f X^2$			
	4	16	13	52	208			
	8	64	6	48	384			
	10	100	4	40	400			
	12	144	3	36	432			
	16	256	4	64	1024			
	Variance		$\frac{X^2}{n} - \left(\frac{\sum f \Sigma}{n}\right)$ $\frac{18}{0} - \left(\frac{240}{30}\right)$,			1/2	
		= 81.6	$5 - 8^2$					
		= 17.6	5.				1/2	3
	Actual m	ean meth	hod:					
	X	f	fX	$d = X - \overline{X}$	d^2	$f d^2$,	
	4	13	52	- 4	16	208		
	8	6	48	0	0	0		
	10	4	40	2	4	16		
	12	3	36	4	16	48		
	16	4	64	8	64	256		
		n = 30	$\sum fX = 240$	0	Σ	$fd^2 = 528$	1/2	1

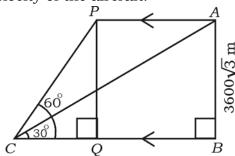
PF & PR-7008

Qn. Nos.	Value Points								
	$\overline{X} = \frac{\sum f}{n}$	X							
	$=\frac{24}{30}$						1		
	Variance	$= \frac{\sum f}{n}$	$\frac{d^2}{30} = \frac{528}{30}$				1/2		
			= 17.6				1	3	
	Step devi	iation Me	ethod :						
	X	f	$d = \frac{X - A}{C}$	fd	d^2	$f d^2$	'		
	4	13	- 3	- 39	9	117			
	8	6	- 1	- 6	1	6			
	10	4	0	0	0	0			
	12	3	1	3	1	3			
	16	4	3	12	9	36			
		<i>n</i> = 30			Σ	$fd^2 = 162$	1		
	A = 10		C = 2						
			$-\left(\frac{\sum f d}{n}\right)^2 \times$: C	OR	<u>.</u>	1/2		
	$= \sqrt{\frac{162}{30}}$ $= \sqrt{5 \cdot 4}$ $= \sqrt{4 \cdot 4}$ $= 2 \cdot 1 \times 2$ $= 4 \cdot 2$	$< C^2$							
	$= \sqrt{5 \cdot 4}$ $= \sqrt{4 \cdot 4}$	$\overline{-1} \times 2$ $\times 2$		= 1	$\frac{162}{30} - \left(\frac{3}{3}\right)$	$\left(\frac{0}{0}\right)^2 \times 4$	1/2		
	= 2·1 × 2	2			5·4 – 1) ·4 × 4 7·6	4			
	= 4.2			-					
	∴ Vaı	riance o	$s^2 = (4 \cdot 2)^2 = 1$	17.6.			1/2	3	

Qn. Nos.	Value Points	Marks allotted						
43.	If p and q are the roots of the equation $x^2 - 3x + 2 = 0$, find the value of $\frac{1}{p} - \frac{1}{q}$.							
	OR							
	A dealer sells an article for Rs. 16 and loses as much per cent as the							
	cost price of the article. Find the cost price of the article.							
	Ans.:							
	a = 1 $b = -3$ $c = 2$							
	$p+q = \frac{-b}{a} = \frac{-(-3)}{1} = 3$							
	$pq = \frac{c}{a} = \frac{2}{1} = 2$							
	$\frac{1}{p} - \frac{1}{q} = \frac{q - p}{pq}$							
	$= \pm \frac{\sqrt{(p+q)^2 - 4pq}}{pq}$							
	$= \pm \frac{\sqrt{3^2 - 4(2)}}{2}$							
	$= \pm \frac{\sqrt{9-8}}{2}$							
	$= \pm \frac{1}{2}$	3						
	$\frac{1}{p} - \frac{1}{q} = +\frac{1}{2}$ or $-\frac{1}{2}$							
	OR							
	C.P. = x							
	S.P. = 16 OR							
	Loss = $x \% = \frac{x}{100} \times x = \frac{x^2}{100}$ $\frac{x-16}{x} = \frac{x}{100}$							
	$S.P. = C.P loss$ $100x - 1600 = x^2$ $\frac{1}{2}$							
	$16 = x - \frac{x^2}{100}$							
	$1600 = 100x - x^2$							

PF & PR-7008

Qn. Nos.	Value Points							
	$x^2 - 100x + 1600 = 0$ ¹ / ₂							
	$x^2 - 80x - 20x + 1600 = 0$							
	x(x-80)-20(x-80) = 0							
	(x-80)(x-20) = 0							
	x - 80 = 0 or $x - 20 = 0$							
	$x = 80 \qquad \qquad x = 20 \qquad \qquad 1$							
	\therefore Cost price is Rs. 80 or Rs. 20. $\frac{1}{2}$	3						
44.	Prove that, "If two circles touch each other externally, their centres and the point of contact are collinear." Ans.:							
	A P B							
	Data: A and B are the centres of touching circles, P is the							
	point of contact. $\frac{1}{2}$							
	To prove: A, P and B are collinear. $\frac{1}{2}$							
	Construction: Draw the tangent XY at P. $\frac{1}{2}$ Proof: In the figure,							
	APX + BPX = 90 + 90 by adding (i) and (ii)							
	$APB = 180^{\circ}$ APB is a straight line $\frac{1}{2}$							
	A, P and B are collinear.	3						


Qn.	Value Points	Marks
Nos.	value 1 oints	allotted

45. If $7 \sin^2 \theta + 3 \cos^2 \theta = 4$ and '\theta' is acute then show that $\cot \theta = \sqrt{3}$.

OR

The angle of elevation of an aircraft from a point on horizontal ground is found to be 30°. The angle of elevation of same aircraft after 24 seconds which is moving horizontally to the ground is found to be 60°. If the height of the aircraft from the ground is $3600\sqrt{3}$ metre. Find

the velocity of the aircraft.

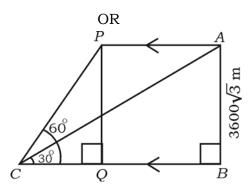
Ans.:

$$4 \sin^2 \theta + 3 \sin^2 \theta + 3 \cos^2 \theta = 4$$

$$4 \sin^2 \theta + 3 \left(\sin^2 \theta + \cos^2 \theta \right) = 4$$

$$4 \sin^2 \theta + 3(1) = 4$$

$$4\sin^2\theta = 4-3$$


$$\sin^2 \theta = \frac{1}{4}$$

$$\sin \theta = \frac{1}{2}$$

$$\theta = 30^{\circ}$$

$$\therefore \cot \theta = \sqrt{3}.$$

Alternate methods can also be considered.

Alternate Method:

$$7 \sin^2 \theta + 3 \cos^2 \theta = 4$$

$$7 \sin^2 \theta + 3 [1 - \sin^2 \theta] = 4$$

$$7 \sin^2 \theta + 3 - 3 \sin^2 \theta = 4$$

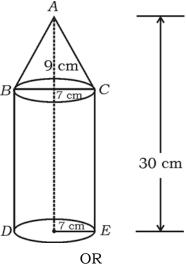
$$\sin^2\theta = \frac{1}{4}$$

$$\sin\theta = \frac{1}{2}$$

$$\cos^2\theta = 1 - \sin^2\theta \qquad \qquad \frac{1}{2}$$

$$\cos \theta = \sqrt{1 - \sin^2 \theta}$$

$$\frac{1}{2}$$


$$= \frac{\sqrt{3}}{2}$$

$$\therefore \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}$$
$$= \sqrt{3}$$

Qn. Nos.	Value Points	Marks allotted
	In $\triangle ABC$, $\triangle ABC = 90^{\circ}$	
	$\tan \theta = \frac{AB}{BC}$	
	$\tan 30^{\circ} = \frac{3600\sqrt{3}}{BC}$	
	$\frac{1}{\sqrt{3}} = \frac{3600\sqrt{3}}{BC}$	
	$BC = 3600\sqrt{3} \cdot \sqrt{3}$	
	BC = 10800 m	
	In $\triangle PCQ$, $PQC = 90^{\circ}$	
	$\tan \theta = \frac{PQ}{CQ}$	
	$\tan 60^{\circ} = \frac{3600\sqrt{3}}{CQ}$	
	$\sqrt{3} = \frac{3600\sqrt{3}}{CQ}$	
	$CQ = 3600 \text{ m}$ $\frac{1}{2}$	
	BQ = BC - CQ = 10800 - 3600	
	BQ = 7200 m ¹ / ₂	
	$\therefore \text{Velocity} = \frac{\text{distance}}{\text{time}} = \frac{d}{t}$	
	$=\frac{7200}{24}$	
	= 300 m/s	3
	OR	
	(Any Alternate method)	

Value Points	Marks allotted

A solid is in the form of a cone mounted on a right circular cylinder, both having same radii as shown in the figure. The radius of the base and height of the cone are 7 cm and 9 cm respectively. If the total height of the solid is 30 cm, find the volume of the solid.

The slant height of the frustum of a cone is 4 cm and the perimeters of its circular bases are 18 cm and 6 cm respectively. Find the curved surface area of the frustum.

Ans.:

81-E

Qn. Nos.

46.

$$r = 7 \text{ cm}$$
 Le

 $h_1 = 21$ cm for cylinder

$$r = 7 \text{ cm}$$

 $h_0 = 9 \text{ cm} \text{ for cone}$

Volume of solid = Volume of cylinder + Volume of cone $\frac{1}{2}$

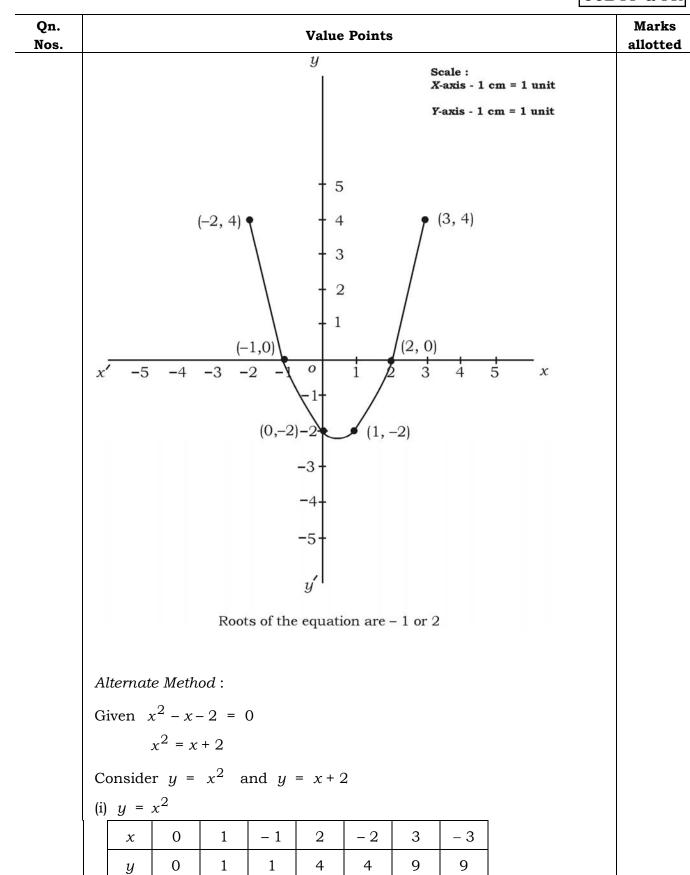
$$= \pi r^2 h_1 + \frac{1}{3} \pi r^2 h_2$$

$$= \pi r^2 \left(h_1 + \frac{1}{3} h_2 \right)$$
 1/2

$$= \frac{22}{7} \times 7^2 \left(21 + \frac{1}{3} \times 9^{-3}\right)$$

$$= \frac{22}{7} \times 7 \times 7 (24)$$

$$= 3696 \text{ c.c.}$$


Direct substitution of h_1 and h_2 value can also be considered.

OR

Qn. Nos.	Value Points							
	$2\pi r_1 = 18 \text{ cm}$ $2\pi r_2 = 6 \text{ cm}$ $l = 4 \text{ cm}$ $\frac{1}{2}$							
	$r_1 = \frac{18}{2\pi} = \frac{9}{\pi} \text{ cm}$ $r_2 = \frac{6}{2\pi} = \frac{3}{\pi} \text{ cm}$							
	Curved Surface Area = $\pi (r_1 + r_2) l$ 1							
	$= \pi \left(\frac{9}{\pi} + \frac{3}{\pi} \right) 4$							
	$= 48 \text{ cm}^2.$	3						
	OR							
	$CSA = l \left[\pi r_1 + \pi r_2 \right]$							
	= 4 [9 + 3]							
	= 4 [12]							
	$= 48 \text{ cm}^2$							
V. 47.	Solve the equation $x^2 - x - 2 = 0$ graphically.							
	Ans.:							
	Let $y = 0$							
	$x^2 - x - 2 = 0 \text{given}$							
	$y = x^2 - x - 2$							
	x 0 1 -1 2 3 -2							
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	Graph roots							
	Table — 2							
	Parabola — 1							
	Roots — $\frac{1}{2} + \frac{1}{2}$	4						

PF & PR-7008

[Turn over

Qn. Nos.					Value	Point	s	Marks allotted
	(ii) y	= x + 2						
	x	0	1	2	- 1	2		
	y	2	3	4	1	0		
							Tables — 2	
							Line — ½	
							Parabola — $\frac{1}{2}$ Roots — $\frac{1}{2} + \frac{1}{2}$	
					y			
							Scale : X-axis - 1 cm = 1 unit	
							Y-axis - 1 cm = 1 unit	
		(-3, 9) •				? (3, 9)	
			\	\				
						5		
				1)				
			(-2,	4)		† 4	(2, 4)	
				\		3/2		
				\	\ /	(0,2)	/	
				(-1,1		1 /	(1, 1)	
					1	/ /.		
	x'	- 5	-4 - 3	-2	-1 o	i	2 3 4 5 x	
					-1	†		
					-2	†		
					-3	+		
					- 4	1		
					_=			
					- 5	Ī		
					y'			
				Roots o			are 2 or -1	
]			roots 0	i tile et	laanon	arc 2 01 -1	1

Qn. Nos.	Value Points	Marks allotted				
48.	Construct a direct common tangent to two circles of radii 4 cm and 2 cm whose centres are 9 cm apart. Measure and write the length of the tangent.					
	Ans.: R = 4 cm $r = 2 cm$ $d = 9 cmR - r = 2 cm$					
	$\frac{D}{R-r}$					
	Length of the tangent = 8.7 cm					
	Drawing four circles 2 Drawing tangents $1\frac{1}{2}$					
	Finding the length 1/2	4				
49.	State and prove Basic Proportionality (Thale's) Theorem. Ans.:					
	If a straight line is drawn parallel to a side of a triangle, then it divides the other two sides proportionally.					

Qn. Nos.	Value Points							
	D E C							
	Data: In \triangle ABC, DE BC To prove: $\frac{AD}{BD} = \frac{AE}{CE}$							
	Construction: Join DC and EB							
	Proof: $\frac{\text{Area of } \Delta \ ADE}{\text{Area of } \Delta \ BDE} = \frac{\frac{1}{2} \times AD \times EL}{\frac{1}{2} \times BD \times EL} \left[\because A = \frac{1}{2} bh \right]$ 1/2							
	$\therefore \frac{\Delta ADE}{\Delta BDE} = \frac{AD}{BD} \qquad \dots (i)$ $\frac{\text{Area of } \Delta ADE}{\text{Area of } \Delta CDE} = \frac{\cancel{1}}{\cancel{2}} \times AE \times DN$ $\cancel{1}/_{2}$							
	$\frac{\Delta ADE}{\Delta CDE} = \frac{AE}{EC}$ $\Rightarrow \frac{AD}{BD} = \frac{AE}{CE}$ $\therefore \text{ Area } \Delta BDE = \text{ area}$ of $\Delta CDE \text{ and Axiom-1}$	4						

31-E	34 CCE	PF & PR
Qn. Nos.	Value Points	Marks allotted
50.	A vertical tree is broken by the wind at a height of 6 metre from its foot	
	and its top touches the ground at a distance of 8 metre from the foot of	
	the tree. Calculate the distance between the top of the tree before	
	breaking and the point at which tip of the tree touches the ground,	
	after it breaks.	
	OR	
	In \triangle <i>ABC</i> , <i>AD</i> is drawn perpendicular to <i>BC</i> . If <i>BD</i> : <i>CD</i> = 3 : 1, then prove that $BC^2 = 2(AB^2 - AC^2)$.	
	Ans.: A B C 8 m E	
	In the figure,	
	Let AC represents the tree h .	
	B is the point of break $BC = 6$ m	
	E is the top of the tree touches the ground $CE = 8 m$	

AE is the distance between the top of the tree before break and after the break.

In
$$\triangle$$
 BCE , \triangle $BCE = 90^{\circ}$

$$BE^{2} = BC^{2} + CE^{2}$$

$$BE^{2} = 6^{2} + 8^{2}$$

$$BE^{2} = 36 + 64$$

$$BE^{2} = 100$$

$$BE = \sqrt{100} = 10 \text{ m}$$

$$BE = AB = 10 \text{ m}$$
(Any other alternate methods give marks)

Qn. Nos.	Value Points	Marks allotted
	In \triangle ACE , $\triangle ACE = 90^{\circ}$	
	$AE^2 = AC^2 + CE^2$	
	$= 16^2 + 8^2$	
	= 256 + 64	
	$AE^2 = 320$ $\frac{1}{2}$	
	$AE = \sqrt{320}$	
	$= 8\sqrt{5} \text{ m}$	4
	OR A Fig. : $\frac{1}{2}$	
	$AB^2 = AD^2 + BD^2$ (i)	
	$AB^{2} = AD^{2} + BD^{2}$ (i) $\frac{1}{2}$ $AC^{2} = AD^{2} + CD^{2}$ (ii) $\frac{1}{2}$	
	By subtracting	
	$AB^2 - AC^2 = BD^2 - CD^2$ 1/2	
	$AB^2 - AC^2 = \left[\frac{3}{4}BC\right]^2 - \left[\frac{1}{4}BC\right]^2$	
	$= \frac{9}{16}BC^2 - \frac{1}{16}BC^2$	
	$\left(AB^2 - AC^2\right) = \frac{8BC^2}{16}$	
	$ \begin{pmatrix} AB^2 - AC^2 \end{pmatrix} = \frac{8BC^2}{16} $ $ = \frac{BC^2}{2} $ $ \therefore 2 \left(AB^2 - AC^2 \right) = BC^2 $ $ \downarrow 2 $	
	$\therefore 2\left(AB^2 - AC^2\right) = BC^2$	4
	[Marks will be given for any alternate method.]	