CCE PF
 CCE PR

 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

S. S. L. C. EXAMINATION, MARCH/APRIL, 2018

```
యృదరి లుత్రంగళక
```


MODEL ANSWERS

Subject : MATHEMATICS

 (ఇంగ్లి风్ భలఱాంతర / English Version)
[గెరిష్థ్థ అంశగళు : 100
[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points I. 1.		In the given Venn diagram $n(A)$ is
allotted				

Qn. Nos.	Ans. Key	Value Points	Marks allotted
3.		A boy has 3 shirts and 2 coats. How many different pairs, a shirt and a coat can he dress up with ?	
		Ans. :	
	C	6	1
4.		In a random experiment, if the occurrence of one event prevents the occurrence of other event is	
		Ans. :	
	D	mutually exclusive event	1
5.		The polynomial $p(x)=x^{2}-x+1$ is divided by $(x-2)$ then the remainder is	
		Ans. :	
	B	3	1
6.		The distance between the co-ordinates of a point (p, q) from the origin is	
	C	Ans. : $\sqrt{p^{2}+q^{2}}$	1
7.		The equation of a line having slope 3 and y-intercept 5 is	
		Ans. :	
	D	$y=3 x+5$	1
8.		The surface area of a sphere of radius 7 cm is	
	B	$616 \mathrm{~cm}^{2}$.	1

PF \& PR-7008

Qn.
II.
9.

Find the HCF of 14 and 21.
Ans. :
$14=2 \times 7$
$21=3 \times 7$
$\mathrm{HCF}=7$
[Direct Answer full marks]
The average runs scored by a batsman in 15 cricket matches is 60 and standard deviation of the runs is 15 . Find the coefficient of variation of the runs scored by him.

Ans. :
$\bar{X}=60$
$\sigma=15$
C.V. $=\frac{\sigma}{\bar{X}} \times 100$
$=\frac{15}{60} \times 100 \quad$ OR $=\frac{15}{60} \times 100$
$=25$.
$=25$
C.V. $=\frac{\text { Standard deviation }}{\text { Average }} \times 100$
$1 / 2$

Write the degree of the polynomial $f(x)=x^{2}-3 x^{3}+2$.
Ans. :
Degree 3
12. What are congruent circles ?

Ans. :
Circles having same radii but different centres. $\left.\begin{array}{l}\text { Different centres but } \\ \text { same radii }\end{array}\right\} \begin{aligned} & 1 / 2 \\ & 1 / 2\end{aligned}$

Qn. Nos.	Value Points	Marks allotted
14.	Write the formula used to find the total surface area of a right circular	
cylinder.		
	Ans. :	TSA $=2 \pi r(r+h)$ sq.units

III. 15. If $U=\{0,1,2,3,4\}$ and $A=\{1,4\}, B=\{1,3\}$ show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.

Ans. :
$L H S=(A \cup B)^{\prime}$
$A \cup B=\{1,3,4\}$
$(A \cup B)^{\prime}=\{0,2\}$
$1 / 2$
$R H S=A^{\prime} \cap B^{\prime}$

$$
\left.\begin{array}{l}
A^{\prime}=\{0,2,3\} \\
B^{\prime}=\{0,2,4\}
\end{array}\right\}
$$

$$
\begin{equation*}
A^{\prime} \cap B^{\prime}=\{0,2\} \tag{ii}
\end{equation*}
$$

From (i) and (ii)

$$
(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}
$$

Find the sum of the series $3+7+11+$ \qquad to 10 terms.

Ans. :
$3+7+11$ \qquad 10 terms
$a=3$
$d=4$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Qn.

Nos.

Value Points	Marks
allotted	

17. At constant pressure certain quantity of water at $24^{\circ} \mathrm{C}$ is heated. It was observed that the rise of temperature was found to be $4^{\circ} \mathrm{C}$ per minute. Calculate the time required to rise the temperature of water to $100^{\circ} \mathrm{C}$ at sea level by using formula.

Ans. :
$a=24$
$d=4$
$T_{n}=100$
$n=$?
$T_{n}=a+(n-1) d$
$1 / 2$
$100=24+(n-1) 4$
$100=24+4 n-4$
$100=20+4 n$
$n=\frac{80}{4}$
$n=20 . \quad(20-1)=19$ minutes or 20th minute $1 / 2$

Alternate Method:
By taking $a=28$ and $n=19$

> OR

Any other correct alternate method give marks.
,

Value Points

18. Prove that $2+\sqrt{5}$ is an irrational number.

Ans. :
Let us assume $2+\sqrt{5}$ is rational
$2+\sqrt{5}=\frac{p}{q}, \quad p, q \in z, q \neq 0$
$\left.\begin{array}{l}\sqrt{5}=\frac{p}{q}-2 \\ \sqrt{5}=\frac{p-2 q}{q}\end{array}\right\}$
$\Rightarrow \sqrt{5}$ is rational
but $\sqrt{5}$ is not a rational number
This is against our assumption
$\therefore \quad 2+\sqrt{5}$ is an irrational number.

2

2
(Any alternate method to be considered)

Qn. Nos.	Value Points	Marks allotted

20. A die numbered 1 to 6 on its faces is rolled once. Find the probability of getting either an even number or multiple of ' 3 ' on its top face.

Ans. :
$S=\{1,2,3,4,5,6\}$
$1 / 2$
$n(S)=6$
$A=\{2,3,4,6\}$
$n(A)=4$
$p(A)=\frac{n(A)}{n(S)}$
$=\frac{4}{6}$ OR $\frac{2}{3}$
This can also be considered

$$
\begin{array}{rlr}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) & 1 / 2 \\
& =\frac{3}{6}+\frac{2}{6}-\frac{1}{6} & \\
& =\frac{4}{6} & 1 / 2
\end{array}
$$

What are like surds and unlike surds ?
Ans. :
A group of surds having same order and same radicand in their simplest form.

$$
1 / 2+1 / 2
$$

Group of surds having different orders or different radicands or both in their simplest form.

2

Qn.	Value Points	Marks Nos.

23.

Find the quotient and the remainder when
$f(x)=2 x^{3}-3 x^{2}+5 x-7$ is divided by $g(x)=(x-3)$ using synthetic division.

OR

Find the zeros of the polynomial $p(x)=x^{2}-15 x+50$.

Ans. :
$f(x)=2 x^{3}-3 x^{2}+5 x-7$
$g(x)=x-3$

3 | | 2 | -3 | 5 |
| ---: | ---: | ---: | ---: |
| | 6 | 9 | 42 |
| 2 | 3 | 14 | 35 |

$q(x)=2 x^{2}+3 x+14$
$r(x)=35$.
$1 / 2$
$f(x)=x^{2}-15 x+50$
At zeroes of the polynomial
$f(x)=0$
$x^{2}-15 x+50=0$
Qn.

Value Points	Marks allotted

24. Solve the equation $x^{2}-12 x+27=0$ by using formula.

Ans. :

$$
\begin{aligned}
& a=1, b=-12, \quad c=27 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(1)(27)}}{2(1)} \\
& x=\frac{12 \pm \sqrt{144-108}}{2} \\
& x=\frac{12 \pm \sqrt{36}}{2} \\
& x=\frac{12 \pm 6}{2} \\
& x=\frac{12+6}{2} \\
& x=\frac{18}{2} \\
& x=9
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted

25.

Draw a chord of length 6 cm in a circle of radius 5 cm . Measure and write the distance of the chord from the centre of the circle.

Ans.

Circle $1 / 2$
Chord $1 / 2$
Mid-point marking
By measuring $O C=4 \mathrm{~cm}$.

Qn. Nos.	Value Points	Marks allotted

In $\triangle A B C, X Y \| B C$ and $X Y=\frac{1}{2} B C$. If the area of $\triangle A X Y=10 \mathrm{~cm}^{2}$, find the area of trapezium $X Y C B$.

Ans. :

$$
\begin{array}{lr}
B D^{2}=A D \cdot C D & 1 / 2 \\
8^{2}=4 \cdot C D & \\
\frac{64}{4}=C D & \\
C D=16 \mathrm{~cm} & 1 / 2
\end{array}
$$

$\therefore \quad A C=C D+A D=16+4=20 \mathrm{~cm}$

Qn. Nos.	Value Points	Marks allotted

28. A student while conducting an experiment on Ohm's law, plotted the graph according to the given data. Find the slope of the line obtained.

X-axis I	1	2	3	4
Y-axis V	2	4	6	8

Ans. :

$$
\begin{array}{ll}
\left(x_{1}, y_{1}\right)=(1,2) & \begin{array}{l}
\text { Alternate method may be } \\
\text { given full marks. }
\end{array} \\
\left(x_{2}, y_{2}\right)=(2,4) & 1 / 2 \\
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & 1 / 2 \\
\text { Slope }=m=\frac{4-2}{2-1}=\frac{2}{1}=2 & 1 \\
\text { Or } \quad\left(x_{1}, y_{1}\right)=(2,4) & \left(x_{2}, y_{2}\right)=3,6 \\
\text { Or } \quad\left(x_{1}, y_{1}\right)=(3,6) & \left(x_{2}, y_{2}\right)=4,8 \tag{1}
\end{array}
$$

Or any two points may be taken to find the slope.

Qn. Nos.	Value Points		
29.	Draw the plan for the information given below :		
	(Scale $20 \mathrm{~m}=1 \mathrm{~cm}$)		
		Metre To C	
	To D 50	140	
		100	40 to B
	To E 30	60	
		From A	

Ans. :
$40 \mathrm{~m}=\frac{1}{20} \times 40=2 \mathrm{~cm}$
$60 \mathrm{~m}=\frac{1}{20} \times 60=3 \mathrm{~cm}$
$100 \mathrm{~m}=\frac{1}{20} \times 100=5 \mathrm{~cm}$
$140 \mathrm{~m}=\frac{1}{20} \times 140=7 \mathrm{~cm}$
$1 / 2$
$30 \mathrm{~m}=\frac{1}{20} \times 30=1.5 \mathrm{~cm}$
$50 \mathrm{~m}=\frac{1}{20} \times 50=2.5 \mathrm{~cm}$

-

30.

Out of 8 different bicycle companies, a student likes to choose bicycle from three companies. Find out in how many ways he can choose the companies to buy bicycle.

Ans. :
From 8 different bicycle companies he chooses 3 bicycle companies.

$$
\begin{array}{rlrl}
{ }^{8} C_{3} & & 1 / 2 \\
{ }^{8} C_{3} & =\frac{8 P_{3}}{3!} & \begin{array}{ll}
\text { Alternate Method: }
\end{array} \\
& =\frac{8 \times 7 \times 6}{3 \times 2 \times 1} & { }^{n} C_{r} & =\frac{n!}{(n-r)!\cdot r!}
\end{array}
$$ allotted

If A and B are two non-disjoint sets, draw Venn diagram to represent $A \backslash B$.

Ans. :

Writing set $A \& B$
Correct shading

Marks
Nos. allotted
33.

There are 10 points in a plane such that no three of them are collinear. Find out how many triangles can be formed by joining these points.

Ans. :
$n=10$
$r=3$

$$
\begin{aligned}
{ }^{n} C_{r} & =\frac{n!}{(n-r)!r!} \\
{ }^{10} C_{3} & =\frac{10!}{(10-3)!3!} \\
& =\frac{10!}{7!3!} \\
& =120 .
\end{aligned}
$$

Alternate method:

$$
\begin{aligned}
{ }^{10} C_{3} & =\frac{{ }^{10} P_{3}}{3!} \\
& =\frac{10 \times 9 \times 8}{3 \times 2 \times 1} \\
& =120 .
\end{aligned}
$$

A student reads the books according to the given data. Draw a pie chart to represent it.

Name of the books	Novels	Short stories	Magazines	Journals
No. of books	10	60	20	30

Ans.

Name of the books	No. of books	Central angle
1. Novels	10	$\frac{10}{120} \times 360=30^{\circ}$
2. Short stories	60	$\frac{60}{120} \times 360=180^{\circ}$
3. Magazines	20	$\frac{20}{120} \times 360=60^{\circ}$
4. Journals	30	$\frac{30}{120} \times 360=90^{\circ}$
Sum of books $=120$		

36. A polynomial $p(x)=x^{2}+4 x+2$ is divided by $g(x)=(x+2)$. Find the quotient by using division algorithm.

Ans. :

$$
\begin{aligned}
& P(x)=x^{2}+4 x+2 \quad g(x)=(x+2) \\
& P(x)=[g(x) * q(x)]+r(x) \\
& x^{2}+4 x+2=[(x+2)(a x+b)]+r(x) \\
& =a x^{2}+b x+2 a x+2 b+r(x) \\
& x^{2}+4 x+2=a x^{2}+x(b+2 a)+2 b+r(x) \\
& a=1 \\
& b+2 a=4 \\
& 2 b+r(x)=2 \\
& b=4-2 \quad b=2 \\
& r(x)=2-4 \\
& 1 / 2 \\
& r(x)=-2
\end{aligned}
$$

Quotient $=(x+2)$
Remainder $=-2$

Qn. Nos.	Value Points	Marks allotted
37.	If $v^{2}=u^{2}+2 a s$, solve for v and find the value of v, if $u=0, a=2$ and $s=100$. Ans. : $\begin{aligned} & v^{2}=u^{2}+2 a s \\ & v=\sqrt{u^{2}+2 a s} \\ & \text { if } \quad u=0, \quad a=2, \quad s=100, \quad v=? \\ & v= \pm \sqrt{0+2(2) 100} \\ & v= \pm \sqrt{400} \\ & v= \pm 20 \end{aligned}$	2

38. A vertical building casts a shadow of length 12 m . If the distance between the top of the building to the tip of the shadow at a particular time of the day is 13 m . Find the height of the building.

Ans. :

Height of the building $=h$
Length of the shadow $=12 \mathrm{~m}$
Distance between top of the building to tip of the shadow $=13 \mathrm{~m}$

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
& 13^{2}=h^{2}+12^{2} \\
& 169=h^{2}+144 \\
& 169-144=h^{2} \\
& 25=h^{2} \\
& h=\sqrt{25}=5 \mathrm{~m}
\end{aligned}
$$

$$
1 / 2
$$

$$
1 / 2
$$

2

Qn. Nos.	Value Points	Marks allotted

Find the co-ordinates of the mid-point of the line segment joining the points (14, 12) and (8, 6).

Ans. :

$$
\begin{array}{rlr}
x_{1} & =14 & x_{2}=8 \\
y_{1} & =12 & y_{2}=6 \\
d & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
d & =\left(\frac{14+8}{2}, \frac{12+6}{2}\right) \\
& =\left(\frac{22}{2}, \frac{18}{2}\right) \\
& =(11,9)
\end{array}
$$

2
IV. 41.

In a Geometric progression the sum of first three terms is 14 and the sum of next three terms of it is 112 . Find the Geometric progression.

OR

If ' a ' is the Arithmetic mean of b and c, ' b ' is the Geometric mean of c and a, then prove that ' c ' is the Harmonic mean of a and b.

Ans. :
Let the terms be $a, a r, a r^{2}, a r^{3}, a r^{4}, a r^{5}$.

$$
\begin{align*}
& a+a r+a r^{2}=14 \\
& a\left(1+r+r^{2}\right)=14 \tag{i}\\
& a r^{3}+a r^{4}+a r^{5}=112 \\
& a r^{3}\left(1+r+r^{2}\right)=112 \tag{ii}
\end{align*}
$$

$1 / 2$
$1 / 2$
$1 / 2$

Qn.	Value Points	Marks Nos.

Alternate method:
$a=\frac{b+c}{2}$
$b=\sqrt{a c}$
$b^{2}=a c$
$b=\frac{a c}{b}$

Substitute $b=\frac{a c}{b}$ in (i)
$a=\frac{\frac{a c}{b}+c}{2}$
$2 a=\frac{a c+b c}{b}$
$2 a b=c(a+b)$
$\frac{2 a b}{a+b}=c$.
42. Marks scored by 30 students of 10th standard in a unit test of mathematics is given below. Find the variance of the scores :

Marks (x)	4	8	10	12	16
No. of students (f)	13	6	4	3	4

Ans. :
Assumed mean method:

X	f	$d=X-A$	fd	d^{2}	$f d^{2}$
4	13	-6	-78	36	468
8	6	-2	- 12	4	24
10	4	0	0	0	0
12	3	2	6	4	12
16	4	6	24	36	144
$n=30 \quad A=10$			$d=+$	$\sum f d^{2}=648$	

Qn.
Nos.

Variance	$=\frac{\sum f d^{2}}{n}-\left(\frac{\sum f d}{n}\right)^{2}$
	$=\frac{648}{30}-\left(\frac{60}{30}\right)^{2}$
	$=21.6-2^{2}$
	$=17.6$.

Direct Method:

X	X^{2}	f	$f X$	$f X^{2}$
4	16	13	52	208
8	64	6	48	384
10	100	4	40	400
12	144	3	36	432
16	256	4	64	1024
$n=30$				
$\sum f X=240$	$\sum f X^{2}=2448$			

Variance $=\frac{\sum f X^{2}}{n}-\left(\frac{\sum f X}{n}\right)^{2}$

$$
\begin{aligned}
& =\frac{2448}{30}-\left(\frac{240}{30}\right)^{2} \\
& =81 \cdot 6-8^{2} \\
& =17 \cdot 6 .
\end{aligned}
$$

Actual mean method:

X	f	$f X$	$d=X-\bar{X}$	d^{2}	$f d^{2}$
4	13	52	-4	16	208
8	6	48	0	0	0
10	4	40	2	4	16
12	3	36	4	16	48
16	4	64	8	64	256

$$
n=30 \quad \sum f X=240 \quad \sum f d^{2}=528
$$

Qn.

Nos.

Value Points
$\bar{X}=\frac{\sum f X}{n}$
$=\frac{240}{30}=8$
Variance $=\frac{\sum f d^{2}}{n}=\frac{528}{30}$
Step deviation Method $:$
X
4

$A=10$
$C=2$
S.D. $=\sqrt{\frac{\sum f d^{2}}{n}-\left(\frac{\sum f d}{n}\right)^{2}} \times C$
OR
$=\sqrt{\frac{162}{30}-\left(\frac{30}{30}\right)^{2}} \times 2$
Variance $=\frac{\sum f d^{2}}{n}-\left(\frac{\sum f d}{n}\right)^{2} \times C^{2}$
$=\sqrt{5 \cdot 4-1} \times 2$
$=\sqrt{4.4} \times 2$
$=\frac{162}{30}-\left(\frac{30}{30}\right)^{2} \times 4$
$=(5 \cdot 4-1) 4$
$=2 \cdot 1 \times 2$
$=4.4 \times 4$
$=17 \cdot 6$
$=4 \cdot 2$
$\therefore \quad$ Variance $\sigma^{2}=(4 \cdot 2)^{2}=17 \cdot 6$.

3
$1 / 2$

Qn. Nos.	Value Points	Marks allotted

43. If p and q are the roots of the equation $x^{2}-3 x+2=0$, find the value of $\frac{1}{p}-\frac{1}{q}$.

OR

A dealer sells an article for Rs. 16 and loses as much per cent as the cost price of the article. Find the cost price of the article.

Ans. :

$$
\begin{aligned}
& a=1 \\
& b=-3 \\
& c=2 \\
& p+q=\frac{-b}{a}=\frac{-(-3)}{1}=3 \\
& p q=\frac{c}{a}=\frac{2}{1}=2 \\
& \frac{1}{p}-\frac{1}{q}=\frac{q-p}{p q} \\
& = \pm \frac{\sqrt{(p+q)^{2}-4 p q}}{p q} \\
& = \pm \frac{\sqrt{3^{2}-4(2)}}{2} \\
& = \pm \frac{\sqrt{9-8}}{2} \\
& = \pm \frac{1}{2} \\
& \frac{1}{p}-\frac{1}{q}=+\frac{1}{2} \text { or }-\frac{1}{2}
\end{aligned}
$$

OR

C.P. $=x$
S.P. $=16$

Loss $\left.=x \%=\frac{x}{100} \times x=\frac{x^{2}}{100}\right\}$

> OR
$\frac{x-16}{x}=\frac{x}{100}$
S.P. = C.P. - loss
$100 x-1600=x^{2}$
$16=x-\frac{x^{2}}{100}$
$1600=100 x-x^{2}$

Qn. Nos.	Value Points		Marks allotted
	$x^{2}-100 x+1600=0$	$1 / 2$	
	$x^{2}-80 x-20 x+1600=0$		
$x(x-80)-20(x-80)=0$			
	$(x-80)(x-20)=0$	1	
	$x-80=0 \quad$ or $\quad x-20=0$	$1 / 2$	3
$x=80$	$x=20$		
	$\therefore \quad$ Cost price is Rs. 80	or	Rs. 20.

Prove that, "If two circles touch each other externally, their centres and the point of contact are collinear."
Ans. :

Data: $\quad A$ and B are the centres of touching circles, P is the point of contact.
To prove : $\quad A, P$ and B are collinear.
Construction: Draw the tangent $X Y$ at P.
Proof:
In the figure,
$\begin{array}{ll}\angle A P X & =90^{\circ} \\ \angle B P X & =90^{\circ}\end{array} \quad \ldots$ (i) $\quad \ldots$ (ii) $\}$

Radius drawn at the point of contact is perpendicular to the tangent
$\lfloor A P X+\triangle B P X=90+90$ by adding (i) and (ii)
$A P B=180^{\circ} \quad A P B$ is a straight line
A, P and B are collinear.

Qn. Nos.	Value Points	Marks allotted

45.

If $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$ and ' θ ' is acute then show that $\cot \theta=\sqrt{3}$.
OR
The angle of elevation of an aircraft from a point on horizontal ground is found to be 30°. The angle of elevation of same aircraft after 24 seconds which is moving horizontally to the ground is found to be 60°. If the height of the aircraft from the ground is $3600 \sqrt{3}$ metre. Find the velocity of the aircraft.

Ans. :

$$
\begin{aligned}
& 4 \sin ^{2} \theta+3 \sin ^{2} \theta+3 \cos ^{2} \theta=4 \\
& 4 \sin ^{2} \theta+3\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4 \\
& 4 \sin ^{2} \theta+3(1)=4 \\
& 4 \sin ^{2} \theta=4-3 \\
& \sin ^{2} \theta=\frac{1}{4} \\
& \sin \theta=\frac{1}{2} \\
& \therefore \quad \theta=30^{\circ} \\
& \therefore \quad \cot \theta=\sqrt{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Alternate Method: } \\
& 7 \sin ^{2} \theta+3 \cos ^{2} \theta=4 \\
& 7 \sin ^{2} \theta+3\left[1-\sin ^{2} \theta\right]=4 \\
& 7 \sin ^{2} \theta+3-3 \sin ^{2} \theta=4 \\
& 4 \sin ^{2} \theta=1 \\
& \begin{array}{rl}
\sin ^{2} \theta & 1 / 2 \\
\sin ^{2} & 1 / 2 \\
\sin \theta & =\frac{1}{2} \\
\cos ^{2} \theta & =1-\sin ^{2} \theta \\
\cos \theta & =\sqrt{1-\sin ^{2} \theta} \\
= & 1 / 2 \\
= & 1 / 2 \\
1-\frac{1}{4} & 1 / 2 \\
2
\end{array} \\
& \therefore \cot \theta=\frac{\sqrt{3}}{\sin \theta}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}
\end{aligned}
$$

Alternate methods can also be considered.

Qn. Nos.	Value Points	Marks allotted

46. A solid is in the form of a cone mounted on a right circular cylinder, both having same radii as shown in the figure. The radius of the base and height of the cone are 7 cm and 9 cm respectively. If the total height of the solid is 30 cm , find the volume of the solid.

OR
The slant height of the frustum of a cone is 4 cm and the perimeters of its circular bases are 18 cm and 6 cm respectively. Find the curved surface area of the frustum.
Ans. :
$r=7 \mathrm{~cm}$
Let $\quad h_{1}=21 \mathrm{~cm}$ for cylinder
$r=7 \mathrm{~cm}$
$h_{2}=9 \mathrm{~cm}$ for cone

Volume of solid $=$ Volume of cylinder + Volume of cone
$=\pi r^{2} h_{1}+\frac{1}{3} \pi r^{2} h_{2}$
$=\pi r^{2}\left(h_{1}+\frac{1}{3} h_{2}\right)$
$=\frac{22}{7} \times 7^{2}\left(21+\frac{1}{3} \times--^{3}\right) \quad 1 / 2$
$=\frac{22}{7} \times \boldsymbol{T} \times 7(24) \quad 1 / 2$
$=3696$ c.c.
Direct substitution of h_{1} and h_{2} value can also be considered.

OR

PF \& PR-7008

V. 47. Solve the equation $x^{2}-x-2=0$ graphically.

Ans. :

Let $y=0$

$$
x^{2}-x-2=0 \quad \text { given }
$$

$\therefore \quad y=x^{2}-x-2$

x	0	1	-1	2	3	-2
y	-2	-2	0	0	4	4

Graph roots

Table -	2
Parabola -	1
Roots -	$1 / 2+1 / 2$

Qn. Nos.	Value Points	Marks allotted

(ii) $y=x+2$

x	0	1	2	-1	2
y	2	3	4	1	0

Tables -	2
Line -	$1 / 2$
Parabola -	$1 / 2$
Roots -	$1 / 2+1 / 2$

4

Roots of the equation are 2 or -1

Qn. Nos.	Value Points	Marks allotted

48. Construct a direct common tangent to two circles of radii 4 cm and 2 cm whose centres are 9 cm apart. Measure and write the length of the tangent.

Ans. :
$R=4 \mathrm{~cm}$
$r=2 \mathrm{~cm}$
$d=9 \mathrm{~cm}$
$R-r=2 \mathrm{~cm}$

Length of the tangent $=8.7 \mathrm{~cm}$
Drawing four circles 2
Drawing tangents $1 \frac{112}{2}$
Finding the length $1 / 2$
State and prove Basic Proportionality (Thale's) Theorem.
Ans. :
If a straight line is drawn parallel to a side of a triangle, then it divides the other two sides proportionally.

Qn. Nos.	Value Points	Marks allotted

Data:
In $\triangle A B C, \quad D E \| B C$

To prove : $\quad \frac{A D}{B D}=\frac{A E}{C E}$

Construction: Join $D C$ and $E B$

Draw $E L \perp A B$ and $D N \perp A C$.

Proof:

$$
\begin{aligned}
& \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle B D E}=\frac{\frac{1}{2} \times A D \times E L}{\frac{1}{2} \times B D \times E L} \quad\left[\because A=\frac{1}{2} b h\right] \\
& \therefore \quad \frac{\triangle A D E}{\triangle B D E}=\frac{A D}{B D} \\
& \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle C D E}=\frac{\frac{1}{2} \times A E \times D I F}{\frac{1}{2} \times E C \times D K} \\
& \frac{\triangle A D E}{\triangle C D E}=\frac{A E}{E C} \\
& \Rightarrow \quad \frac{A D}{B D}=\frac{A E}{C E} \quad\left(\begin{array}{ll}
\because & \text { Area } \triangle B D E=\text { area } \\
& \text { of } \triangle C D E \text { and Axiom-1 }
\end{array}\right)
\end{aligned}
$$

Qn.	Value Points	Marks Nos.

50. A vertical tree is broken by the wind at a height of 6 metre from its foot and its top touches the ground at a distance of 8 metre from the foot of the tree. Calculate the distance between the top of the tree before breaking and the point at which tip of the tree touches the ground, after it breaks.

> OR

In $\triangle A B C, A D$ is drawn perpendicular to $B C$. If $B D: C D=3: 1$, then prove that $B C^{2}=2\left(A B^{2}-A C^{2}\right)$.

Ans. :

Fig. : 1

In the figure,
Let $A C$ represents the tree h.
B is the point of break $B C=6 \mathrm{~m}$
E is the top of the tree touches the ground $C E=8 \mathrm{~m}$
$A E$ is the distance between the top of the tree before break and after the break.
In $\triangle B C E, \quad B C E=90^{\circ} \quad 1 / 2$

$$
\begin{array}{ll}
B E^{2}=B C^{2}+C E^{2} & 1 / 2 \\
B E^{2}=6^{2}+8^{2} & \\
B E^{2}=36+64 & 1 / 2 \\
B E^{2}=100 & \\
B E=\sqrt{100}=10 \mathrm{~m} & \\
B E=A B=10 \mathrm{~m} &
\end{array}
$$

(Any other alternate methods give marks)

\qquad

